链表

链表种类

单链表、循环链表、双链表、双向循环链表

删除操作

在实际的软件开发中,从链表中删除一个数据无外乎这两种情况:
删除结点中“值等于某个给定值”的结点;
删除给定指针指向的结点。

对于第一种情况,不管是单链表还是双向链表,为了查找到值等于给定值的结点,都需要从头结点开始一个一个依次遍历对比,直到找到值等于给定值的结点,然后再通过我前面讲的指针操作将其删除。
尽管单纯的删除操作时间复杂度是 O(1),但遍历查找的时间是主要的耗时点,对应的时间复杂度为 O(n)。根据时间复杂度分析中的加法法则,删除值等于给定值的结点对应的链表操作的总时间复杂度为 O(n)。
对于第二种情况,我们已经找到了要删除的结点,但是删除某个结点 q 需要知道其前驱结点,而单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,我们还是要从头结点开始遍历链表,直到 p->next=q,说明 p 是 q 的前驱结点。
但是对于双向链表来说,这种情况就比较有优势了。因为双向链表中的结点已经保存了前驱结点的指针,不需要像单链表那样遍历。所以,针对第二种情况,单链表删除操作需要 O(n) 的时间复杂度,而双向链表只需要在 O(1) 的时间复杂度内就搞定了!

插入

同理,如果我们希望在链表的某个指定结点前面插入一个结点,双向链表比单链表有很大的优势。双向链表可以在 O(1) 时间复杂度搞定,而单向链表需要 O(n) 的时间复杂度。

如何基于链表实现 LRU 缓存淘汰算法?

  1. 如果此数据之前已经被缓存在链表中了,我们遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的头部。
  2. 如果此数据没有在缓存链表中,又可以分为两种情况:
    1. 如果此时缓存未满,则将此结点直接插入到链表的头部;
    2. 如果此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。
      现在我们来看下 m 缓存访问的时间复杂度是多少。因为不管缓存有没有满,我们都需要遍历一遍链表,所以这种基于链表的实现思路,缓存访问的时间复杂度为 O(n)。
      实际上,我们可以继续优化这个实现思路,比如引入散列表(Hash table)来记录每个数据的位置,将缓存访问的时间复杂度降到 O(1)。

链表 VS 数组性能大比拼

时间复杂度 数组 链表
插入删除 o(n) o(1)
随机访问 o(1) o(n)

几个写链表代码技巧

技巧一:理解指针或引用的含义

将某个变量赋值给指针,实际上就是将这个变量的地址赋值给指针,或者反过来说,指针中存储了这个变量的内存地址,指向了这个变量,通过指针就能找到这个变量。
在编写链表代码的时候,我们经常会有这样的代码:p->next=q。这行代码是说,p 结点中的 next 指针存储了 q 结点的内存地址。
还有一个更复杂的,也是我们写链表代码经常会用到的:p->next=p->next->next。这行代码表示,p 结点的 next 指针存储了 p 结点的下下一个结点的内存地址。

技巧二:警惕指针丢失和内存泄漏

p->next = x;  // 将 p 的 next 指针指向 x 结点;
x->next = p->next; // 将 x 的结点的 next 指针指向 b 结点;

p->next 指针在完成第一步操作之后,已经不再指向结点 b 了,而是指向结点 x。第 2 行代码相当于将 x 赋值给 x->next,自己指向自己。因此,整个链表也就断成了两半,从结点 b 往后的所有结点都无法访问到了。
我们插入结点时,一定要注意操作的顺序,要先将结点 x 的 next 指针指向结点 b,再把结点 a 的 next 指针指向结点 x,这样才不会丢失指针,导致内存泄漏。所以,对于刚刚的插入代码,我们只需要把第 1 行和第 2 行代码的顺序颠倒一下就可以了。

技巧三:利用哨兵简化实现难度

首先,我们先来回顾一下单链表的插入和删除操作。如果我们在结点 p 后面插入一个新的结点,只需要下面两行代码就可以搞定。

new_node->next = p->next;
p->next = new_node;

但是,当我们要向一个空链表中插入第一个结点,刚刚的逻辑就不能用了。我们需要进行下面这样的特殊处理,其中 head 表示链表的头结点。所以,从这段代码,我们可以发现,对于单链表的插入操作,第一个结点和其他结点的插入逻辑是不一样的。

if (head == null) {
head = new_node;
}

我们再来看单链表结点删除操作。如果要删除结点 p 的后继结点,我们只需要一行代码就可以搞定。

p->next = p->next->next;

但是,如果我们要删除链表中的最后一个结点,前面的删除代码就不 work 了。跟插入类似,我们也需要对于这种情况特殊处理。写成代码是这样子的:

if (head->next == null) {
head = null;
}

从前面的一步一步分析,我们可以看出,针对链表的插入、删除操作,需要对插入第一个结点和删除最后一个结点的情况进行特殊处理。这样代码实现起来就会很繁琐,不简洁,而且也容易因为考虑不全而出错。如何来解决这个问题呢?
技巧三中提到的哨兵就要登场了。哨兵,解决的是国家之间的边界问题。同理,这里说的哨兵也是解决“边界问题”的,不直接参与业务逻辑。
还记得如何表示一个空链表吗?head=null 表示链表中没有结点了。其中 head 表示头结点指针,指向链表中的第一个结点。
如果我们引入哨兵结点,在任何时候,不管链表是不是空,head 指针都会一直指向这个哨兵结点。我们也把这种有哨兵结点的链表叫带头链表。相反,没有哨兵结点的链表就叫作不带头链表。
我画了一个带头链表,你可以发现,哨兵结点是不存储数据的。因为哨兵结点一直存在,所以插入第一个结点和插入其他结点,删除最后一个结点和删除其他结点,都可以统一为相同的代码实现逻辑了。
实际上,这种利用哨兵简化编程难度的技巧,在很多代码实现中都有用到,比如插入排序、归并排序、动态规划等。这些内容我们后面才会讲,现在为了让你感受更深,我再举一个非常简单的例子。代码我是用 C 语言实现的,不涉及语言方面的高级语法,很容易看懂,你可以类比到你熟悉的语言。
代码一:

// 在数组 a 中,查找 key,返回 key 所在的位置
// 其中,n 表示数组 a 的长度
int find(char* a, int n, char key) {
// 边界条件处理,如果 a 为空,或者 n<=0,说明数组中没有数据,就不用 while 循环比较了
if(a == null || n <= 0) {
return -1;
}

int i = 0;
// 这里有两个比较操作:i<n 和 a[i]==key.
while (i < n) {
if (a[i] == key) {
return i;
}
++i;
}

return -1;
}

代码二:

// 在数组 a 中,查找 key,返回 key 所在的位置
// 其中,n 表示数组 a 的长度
// 我举 2 个例子,你可以拿例子走一下代码
// a = {4, 2, 3, 5, 9, 6} n=6 key = 7
// a = {4, 2, 3, 5, 9, 6} n=6 key = 6
int find(char* a, int n, char key) {
if(a == null || n <= 0) {
return -1;
}

// 这里因为要将 a[n-1] 的值替换成 key,所以要特殊处理这个值
if (a[n-1] == key) {
return n-1;
}

// 把 a[n-1] 的值临时保存在变量 tmp 中,以便之后恢复。tmp=6。
// 之所以这样做的目的是:希望 find() 代码不要改变 a 数组中的内容
char tmp = a[n-1];
// 把 key 的值放到 a[n-1] 中,此时 a = {4, 2, 3, 5, 9, 7}
a[n-1] = key;

int i = 0;
// while 循环比起代码一,少了 i<n 这个比较操作
while (a[i] != key) {
++i;
}

// 恢复 a[n-1] 原来的值, 此时 a= {4, 2, 3, 5, 9, 6}
a[n-1] = tmp;

if (i == n-1) {
// 如果 i == n-1 说明,在 0...n-2 之间都没有 key,所以返回 -1
return -1;
} else {
// 否则,返回 i,就是等于 key 值的元素的下标
return i;
}
}

对比两段代码,在字符串 a 很长的时候,比如几万、几十万,你觉得哪段代码运行得更快点呢?答案是代码二,因为两段代码中执行次数最多就是 while 循环那一部分。第二段代码中,我们通过一个哨兵 a[n-1] = key,成功省掉了一个比较语句 i < n,不要小看这一条语句,当累积执行万次、几十万次时,累积的时间就很明显了。
当然,这只是为了举例说明哨兵的作用,你写代码的时候千万不要写第二段那样的代码,因为可读性太差了。大部分情况下,我们并不需要如此追求极致的性能。

技巧四:重点留意边界条件处理

  1. 如果链表为空时,代码是否能正常工作?
  2. 如果链表只包含一个结点时,代码是否能正常工作?
  3. 如果链表只包含两个结点时,代码是否能正常工作?
  4. 代码逻辑在处理头结点和尾结点的时候,是否能正常工作?

技巧五:举例画图,辅助思考

技巧六:多写多练,没有捷径

算法题

如何判断一个字符串是否是回文字符串的问题

public class PalindromeLinkedList {

public static boolean isPalindrome(ListNode head) {
if (head == null || head.next == null) {
return true;
}

Stack<Integer> stack = new Stack<>();

ListNode fast = head;
ListNode slow = head;

while (fast != null && fast.next != null) {
stack.push(slow.val);
fast = fast.next.next;
slow = slow.next;
}

if (fast != null) {
slow = slow.next;
}

while (slow != null) {
if (stack.pop() != slow.val) {
return false;
}

slow = slow.next;
}

return true;
}

public static void main(String[] args) {
ListNode node1 = new ListNode(1);
ListNode node2 = new ListNode(2);
ListNode node3 = new ListNode(3);
ListNode node4 = new ListNode(4);
ListNode node5 = new ListNode(5);
ListNode node6 = new ListNode(4);
ListNode node7 = new ListNode(3);
ListNode node8 = new ListNode(2);
ListNode node9 = new ListNode(1);
node1.next = node2;
node2.next = node3;
node3.next = node4;
node4.next = node5;
node5.next = node6;
node6.next = node7;
node7.next = node8;
node8.next = node9;
System.out.println(isPalindrome(node1));
}
}

单链表反转

public class ReverseLinkedList {

public static ListNode reverseList(ListNode head) {
if (head == null) {
return head;
}

ListNode newHead = null;

while (head != null) {
ListNode next = head.next;
head.next = newHead;
newHead = head;
head = next;
}

return newHead;
}

public static void main(String[] args) {
ListNode first = new ListNode(1);
ListNode second = new ListNode(2);
ListNode third = new ListNode(3);
first.next = second;
second.next = third;

ListNode node = reverseList(first);
while (node != null) {
System.out.println(node.val);
node = node.next;
}
}
}

链表中环的检测

public class LinkedListCycle {

public static boolean hasCycle(ListNode head) {
if (head == null || head.next == null) {
return false;
}

ListNode slow = head;
ListNode fast = head.next;
while (fast != null && fast.next != null && fast != slow) {
slow = slow.next;
fast = fast.next.next;
}

return fast == slow;
}

public static void main(String[] args) {
ListNode node1 = new ListNode(1);
ListNode node2 = new ListNode(2);
ListNode node3 = new ListNode(3);
ListNode node4 = new ListNode(4);
ListNode node5 = new ListNode(5);
node1.next = node2;
node2.next = node3;
node3.next = node4;
node4.next = node5;
node5.next = node2;

System.out.println(hasCycle(node1));
}
}

两个有序的链表合并

public class MergeKSortedLists {

public static ListNode mergeKLists(ListNode[] lists) {
if (lists == null || lists.length == 0) {
return null;
}

PriorityQueue<ListNode> queue = new PriorityQueue<>(lists.length,
(o1, o2) -> {
if (o1.val < o2.val) {
return -1;
} else if (o1.val == o2.val) {
return 0;
} else {
return 1;
}
});

ListNode dummy = new ListNode(0);
ListNode tail = dummy;

for (ListNode node : lists) {
if (node != null) {
queue.add(node);
}
}

while (!queue.isEmpty()) {
tail.next = queue.poll();
tail = tail.next;

if (tail.next != null) {
queue.add(tail.next);
}
}

return dummy.next;
}

public static void main(String[] args) {
ListNode node1 = new ListNode(2);
ListNode node11 = new ListNode(3);
ListNode node12 = new ListNode(6);
node1.next = node11;
node11.next = node12;

ListNode node2 = new ListNode(1);
ListNode node21 = new ListNode(7);
ListNode node22 = new ListNode(9);
node2.next = node21;
node21.next = node22;

ListNode node3 = new ListNode(4);
ListNode node31 = new ListNode(5);
ListNode node32 = new ListNode(8);
node3.next = node31;
node31.next = node32;
ListNode[] listNodes = new ListNode[]{node1, node2, node3};
ListNode node = mergeKLists(listNodes);
while (node != null) {
System.out.println(node.val);
node = node.next;
}
}
}

删除链表倒数第 n 个结点

求链表的中间结点